SOLUTION BRIEF By: Humza Altaf, SONiC Network Engineer

Revision No.	Description	Editor	Date
1.0	Guide for PortChannel in SONiC	Humza Altaf	Oct 15, 2023

Simplify SONiC adoption with Hardware Nation.

Talk with our specialists to learn about our integrated approach that includes guidance, training, professional services, support, and orchestration.

Table of Contents

Introduction to PortChannel	3
Network Topology	3
Port Mapping	4
Configurations	4
Step 1	4
Step 2	4
Step 3	5
Step 4	6
Step 5	6
Step 6	7
Step 7	7
Step 8	7
Result	8
References	9

Introduction to PortChannel

PortChannel, also known as Link Aggregation or EtherChannel, is a network technology used to aggregate multiple physical network links into a single logical link. This approach enhances network performance, redundancy, and fault tolerance by distributing traffic across these combined links. PortChannel allows for the simultaneous use of multiple connections between network devices, such as switches and routers, providing increased bandwidth and network resilience.

Network Topology

Suppose we have a network with two hosts and an EtherChannel between two switches. We want to establish communication between these hosts by keeping them in the same VLAN.

To do this, we would need to configure our switches and hosts accordingly. Let's say we have two switches, S1 and S2, and two hosts, PC1 and PC2. Now draw network topology in GNS3 using community SONiC (version 202205) switches and hosts.

Port Mapping

GNS3	SONIC
Ethernet 0	Ethernet 0
Ethernet 1	Ethernet 4
Ethernet 2	Ethernet 8
Ethernet 3	Ethernet 12

Configurations

For the above topology, all hosts and switches are first configured before sending traffic. First, switch S1 is configured and the same steps are repeated for the switch S2. Command Reference guide is also available on GitHub for SONiC, whose link is given <u>here</u>.

Follow these steps to configure S1.

Step 1

Check the status of interfaces by using the command given below:

show interfaces status

admin@sonic:	~\$ show interface	s status								
Interface	Lanes	Speed	MTU	FEC	Alias	Vlan	Орег	Admin	Туре	Asym PFC
Ethernet0	25,26,27,28	1G	9100	N/A	fortyGigE0/0	routed	up	up	N/A	N/A
Ethernet4	29,30,31,32	1G	9100	N/A	fortyGigE0/4	routed	up	up	N/A	N/A
Ethernet8	33,34,35,36	1G	9100	N/A	fortyGigE0/8	routed	up	up	N/A	N/A

• The administrative port refers to the settings and configurations applied by a network administrator to a specific port on a switch, while the operational port status reflects the current operational state of that port. Suppose one wants to enable a port and sets Admin Status to "up," but there is no cable connected to the port. So, it can never reach Oper Status "up" and will stay in Oper Status "down."

Step 2

By default, all interfaces are routed (L3) and IP is assigned to them. To check the status of IP addresses, use the following command given below:

• show ip interfaces

admin@sonic: Interface	~\$ show ip Master	interfaces IPv4 address/mask	Admin/Oper	BGP Neighbor	Neighbor IP
Ethernet0		10.0.0/31	up/up	ARISTA01T2	10.0.0.1
Ethernet4		10.0.0.2/31	up/up	ARISTA02T2	10.0.0.3

Step 2 (Continued)

Remove the IP addresses to make that interface a switch port (L2). For this, command is given below:

```
    sudo config interface ip remove/add <interface_name> <ip_addr>
```

admin@sonic:~\$	sudo	config	interface	ip	remove	Ethernet0	10.0.0.0/31
admin@sonic:~\$	sudo	config	interface	ip	гемоvе	Ethernet4	10.0.0.2/31
admin@sonic:~\$	sudo	config	interface	ip	гемоvе	Ethernet8	10.0.0.4/31

Note: It is better practice to save configurations after executing two or three commands by using "sudo config save -y" command.

Step 3

Now create Portchannel between switches. Before creating Portchannel, check its status by using the following command given below:

show interfaces portchannel

```
admin@sonic:~$ show interfaces portchannel
Flags: A - active, I - inactive, Up - up, Dw - Down, N/A - not available,
S - selected, D - deselected, * - not synced
No. Team Dev Protocol Ports
```

In the above table, no Portchannel is created, so create portchannel by using the following command given below:

```
    sudo config portchannel (add | del) <portchannel_name> [--min-links <num_min_links>]
    [--fallback (true | false) [--fast-rate (true | false)]
```

After creating Portchannel, check its status.

```
admin@sonic:~$ sudo config portchannel add PortChannel0002
admin@sonic:~$ show interfaces portchannel
Flags: A - active, I - inactive, Up - up, Dw - Down, N/A - not available,
        S - selected, D - deselected, * - not synced
    No. Team Dev Protocol Ports
        -----
0002 PortChannel0002 LACP(A)(Dw)
```

Step 4

Now make ports be a member of the portchannel by using the following command given below:

sudo config portchannel member (add | del) <portchannel_name> <member_portname>

admin@sonic:~\$ sudo config portchannel member add PortChannel0002 Ethernet0 admin@sonic:~\$ sudo config portchannel member add PortChannel0002 Ethernet4

After making members, check the status.

Note: In the above figure, the status of the ports is (S) "selected." This status will be displayed when a Portchannel is configured on both switches, and the ports are members of it.

Step 5

Now create VLAN for topology. Before creating VLAN, check the VLAN table by using the following command given below:

show vlan brief

admin@sonic:~\$ show vlan brief							
VLAN ID	IP Address	Ports	Port Tagging	Proxy ARP			
+===========	+======================================	==+=========		:=+============+			

In the above table, no VLAN is created, so create VLAN by using the following command given below:

sudo config vlan (add | del) <vlan_id>

adr adr	nin@sonic:~\$ sud nin@sonic:~\$ show	o config vlan ado w vlan brief	j 10	
	VLAN ID IP A	ddress Ports	Port Tagging	Proxy ARP
+==	10	+ 		disabled

Step 6

Assign VLAN to ports. In SONIC, a port can be tagged or un-tagged. Trunk ports are usually tagged while access ports are un-tagged.

• sudo config vlan member add/del [-u|--untagged] <vlan_id> <mem- ber_portname>

```
admin@sonic:~$ sudo config vlan member add -u 10 Ethernet8
admin@sonic:~$ sudo config vlan member add 10 PortChannel0002
```

Now check the status of the VLAN table.

admin@sonic:~\$ show vlan brief							
VLAN ID IP Address	Ports	Port Tagging					
10 10	Ethernet8 PortChannel0002	untagged tagged					

Step 7

Repeat steps 1-6 for the switch S2.

Step 8

Assign IP addresses to hosts PC1 and PC2 by using command given below:

ip <ip_addr> <subnet mask>

PC1> ip 192.168.11.2/24 255.255.255.0 Checking for duplicate address... PC1 : 192.168.11.2 255.255.255.0

Step 8 (Continued)

After assigning IP addresses, check the status of IP address using command given below:

• show ip

PC1> sh ip		
NAME	:	PC1[1]
IP/MASK	:	192.168.11.2/24
GATEWAY	:	255.255.255.0
DNS	:	
MAC	:	00:50:79:66:68:00
LPORT	:	10008
RHOST:PORT	:	127.0.0.1:10009
MTU	:	1500

Result

PC1 to PC2

Once the switches and hosts are configured, communication becomes possible among hosts in the same VLAN. As is evident from the provided figure below, PC1 is receiving a response from PC2, as both of them belong to the same VLAN. Furthermore, the TTL (Time-to-Live) value stays at 64 and remains unchanged because no routing is involved. Therefore, the Portchannel has been successfully configured.

PC1> ping 192.168.11.3							
84	bytes	from	192.168.11.3	<pre>icmp_seq=1</pre>	ttl=64	time=5.028 ms	
84	bytes	from	192.168.11.3	<pre>icmp_seq=2</pre>	ttl=64	time=5.433 ms	
84	bytes	from	192.168.11.3	icmp_seq=3	ttl=64	time=5.524 ms	
84	bytes	from	192.168.11.3	<pre>icmp_seq=4</pre>	ttl=64	time=5.206 ms	
84	bytes	from	192.168.11.3	<pre>icmp_seq=5</pre>	ttl=64	time=5.331 ms	

PC2 to PC1

PC2> ping 192.168.11.2							
84	bytes	from	192.168.11.2	icmp_seq=1	ttl=64	time=5.457 ms	
84	bytes	from	192.168.11.2	<pre>icmp_seq=2</pre>	ttl=64	time=5.146 ms	5
84	bytes	from	192.168.11.2	<pre>icmp_seq=3</pre>	ttl=64	time=5.455 ms	5
84	bytes	from	192.168.11.2	<pre>icmp_seq=4</pre>	ttl=64	time=5.725 ms	5
84	bytes	from	192.168.11.2	<pre>icmp_seq=5</pre>	ttl=64	time=5.092 ms	5

We connect ideas, people, and technology.

References

https://github.com/sonic-net/sonic-utilities/blob/master/doc/Command-Reference.md