
W
H

IT
EP

A
PE

R Improving Overlay Solutions
with Hardware-Based
VXLAN Termination
Connections Between the
Virtual and Physical World

WHITEPAPER1

Abstract

As virtualization and cloud technologies become more prevalent in today’s network
infrastructure, the legacy network lacks agility and scale. This paper describes
how a hardware-accelerated VXLAN (Virtual Extensible LAN) solution using Pica8
software on white box switches can solve those issues without performance impact.
We will also explain how the growing acceptance of a standard API to control this
technology (OVSdb) is helping the deployment of these solutions.

Introduction

Network architectures are undergoing fundamental changes as cloud providers and
large data centers address ever-growing mobile workloads. When workloads shift across
physical and virtual infrastructure like servers, storage, authentication and load-balancing
devices, new networks must reconfigure themselves on the fly based on ever-changing
application needs. To meet this requirement, network infrastructures will continue to
evolve from being hardware-bound to being software-led. It will be the software that
enables the dynamic and flexible control of the network, while the hardware provides
performance support.

Operations teams typically build a software layer that defines a typical workflow to
initiate a service. But today, hardware vendors control that software and do not share an
open interface with the developer community to use its network infrastructure for service
differentiation (contrasting to what is possible on the server side).

In addition, traditional network architectures have challenges with logical scale and
provisioning. VXLAN tries to solve the Layer-2 scale issue and VLAN limitation on the
network. To scale the provisioning of those tunnels, it is common to use the standard
OVSdb API used by all the major overlay SDN controllers today (VMware NSX,
Midokura MidoNet, OpenContrail).

This white paper examines alternative software-led approaches to controlling the network
and specifically looks at the benefits of building VXLAN tunnels as a virtual network overlay.

VXLAN Explained

What Problems VXLAN Are Solving?

Problem 1: Maximum number of VLANs in a data center

VXLAN is a standards-based Layer-2 and overlay technology, defined in RFC 7348.
VXLAN provides the same Ethernet Layer-2 network services that a VLAN does, but with
greater scalability, extensibility and flexibility. It provides multi-tenancy across the data
centers by extending Layer-2 segments over Layer-3 boundaries. With VXLAN, up to 16
million Layer-2 segments are possible in contrast to only 4,000 by VLANs. Therefore,
VXLAN is suitable for large-scale deployments. It is also used as an overlay solution to
extend Layer-2 connectivity over Layer-3 segments.

2VxLAN & NSX architecture and configuration

Problem 2: Using a routing technology in a data center and keeping Layer-2
connectivity for some applications

Using typical Layer-2 technologies for data centers is not a scalable solution (STP or
MLAG). It is becoming increasingly common to use routing protocols (OSPF and BGP)
in the data center (see draft-ietf-rtgwg-bgp-routing-large-dc-02 for an example of large
data center design). But even for those Layer-3 data centers, it is useful to keep Layer-2
connectivity between hosts or virtual machines. This can be done with a VXLAN tunnel
doing Layer-2 frame encapsulation across the Layer-3 data center.

A typical example of such need is VM mobility. Moving VMs between or inside the
data center usually needs a Layer-2 segment between the two physical hosts. Creating
combined segments over VTEPs and VXLAN enables seamless VM mobility as the
combined solution provides virtual Layer-2 across physical boundaries.

VXLAN Defined

VXLAN is an overlay technology. By using UDP for transporting Layer-2 (MAC) frames,
it is an MAC-in-UDP encapsulation method. In VXLAN, the original Layer-2 frame is
encapsulated inside an IP-UDP packet by adding
VXLAN header as shown in Figure 1.

Figure 1. VXLAN Packet Format

The VXLAN header is 8-bytes in length and consists of 24-bit VXLAN network identifier
(VNID) and hence, provides up to 16M Layer-2 segments.

VXLAN Tunnel Endpoint (VTEP)

VXLAN uses VTEPs to map end devices or tenants to VXLAN and perform encapsulation
and de-encapsulation functions. A VTEP consists of two interfaces: one for local LAN and
a second one for an IP interface to connect to other VTEPs across an IP network. The
IP interface identifies the VTEP device by unique IP address assigned to this interface.
VTEPs use the IP interface to encapsulate Layer-2 frames, and transports the resulting
encapsulated packet over the IP network. Additionally, a VTEP can discover remote VTEPs
for relevant VXLAN segments, and learns remote MAC address-to-VTEP binding via IP
interface. The functional components of VTEPs and corresponding logical topology are
shown in Figure 2.

D
st.

M
A

C
 A

dd
r.

Sr
c.

M
A

C
 A

dd
r.

VL
A

N
 T

yp
e

0x
81

00

VL
A

N
 ID

Ta
g

Et
he

r T
yp

e
0x

08
00

U
D

P
Sr

c.
 P

or
t

VX
LA

N
Po

rt

U
D

P
Le

ng
th

C
he

ck
su

m
0x

00
00

VX
LA

N
RR

RR
1R

RR

Re
se

rv
ed

VN
ID

Re
se

rv
ed

IP
 H

ea
de

r
M

isc
 D

at
a

Pr
ot

oc
ol

0x
11

H
ea

de
r

C
he

ck
su

m

O
ut

er
Sr

c.
 IP

O
ut

er
D

st.
 IP

Outer
Mac Header

Outer
IP Header

VXLAN
HeaderUDP Header FCSOriginal L2 Frame

48 48 16 16 16 72 8 16 32 32 16 16 16 16 8 24 24 8

14 Bytes
(4 bytes optional) 20 Bytes 8 Bytes 8 Bytes

WHITEPAPER3

Figure 2. VTEP

VXLAN Tunnel Provisioning

VTEP Termination Provisioning

For a specific VXLAN tunnel, only the two VTEP termination points need to be
provisioned. As for the rest of the network, the VXLAN packet is handled as a standard
IP packet. A VTEP can be either a hardware VTEP (typically a TOR switch) or a software
VTEP (typically a virtual switch on a server like OVS). It is also possible to have a VXLAN
tunnel between a hardware VTEP and a software VTEP. The provisioning can be done
manually, via CLI like any other networking feature, but it obviously does not scale for a
dynamic data center. The standard API for VTEP provisioning is the OVSDB VTEP API.

What is OVSDB VTEP API?

In the past, networking standards were designed by standard bodies like IETF or IEEE.
As the networking industry becomes more integrated with the server and software
technologies, the open source community will become more and more the source
of network standard. OVSDB is a good example of an open source software driven
standard.

The Open vSwitch Database Management Protocol (OVSDB) is an OpenFlow
configuration protocol designed to manage Open vSwitch implementations. Because
OVS has become widely popular, its management protocol has become the de-facto
standard API to control VTEP termination. OVSDB is a JSON RPC protocol.

What is an VXLAN Overlay Solution?

A VXLAN overlay solution is a mesh of tunnels built automatically by an SDN controller.
Typical examples of this include Midokura MidoNet, VMware NSX or OpenContrail.
Those SDN controllers connect all the data center objects like VMs, storage, load
balancing or firewalling using common infrastructure while providing secure, seamless
connectivity in a multi-tenant environment. This is done by creating an overlay of full-
mesh, stateless tunnels between the tenant objects. Those SDN controllers address the
connectivity of the virtual switches embedded in VM host operating systems.

Network overlay solutions use a policy-based method to assign network parameters
to VMs, rather than use the data plane to learn them as done by legacy equipment.
This approach creates an “any-to-any” connectivity between VMs. The virtual switch is

Multicast
Group

IP NetworkEnd System A
Mac-A

IP-A

End System B
Mac-B

IP-B

End System End System

VTEP-3
IP-3 VTEP-3

VTEP-2
IP-2

VTEP-2

VTEP-1
IP-1

VTEP-1

4VxLAN & NSX architecture and configuration

a critical piece of this infrastructure because that is where the tunneling encapsulation
and de-capsulation starts. Open vSwitch (OVS) is a good example as it assumes a
fully virtualized environment. Deployments are typically a hybrid environment with some
non-virtualized servers or service appliances.

To connect a VM to a non-virtualized device, a network gateway is needed as a
termination point for the overlay tunnel. A hardware-based VxLAN tunnel solution
is preferred because a software-based network gateway can quickly become a
performance chokepoint as it has to handle de-capsulation of the tunneling protocol at
line-rate speed.

Benefits of Hardware-accelerated VXLAN	

Virtual to Physical Bridge

Overlay solutions provide the creation of Layer-2 segments over Layer-3 underlays, via a
native VXLAN bridge. However, it can only create these tunnels between virtual switches.
Any connectivity to physical bare metal machines or network devices is not covered and
requires a gateway.

In every deployment, connectivity beyond the virtual cluster is a must. While connecting
many virtual machines is the core need, most data centers require connectivity to physical
NAS for storage, external firewalls, routers and cloud management systems. Creating
combined solutions using a PicOS-integrated gateway enables a seamless combined
solution where the VM is unaware of the translation and seamlessly connects to any
physical server and gateways.

For a description of the PicOS architecture, please visit:
http://www.pica8.com/open-switching/open-switching-overview.php

Layer 3
Network

VXLAN Tunnel VNI 10
L2 in L3

Switch A

A

VXLAN-200

VXLAN-200VXLAN-20 VXLAN-20

VXLAN-5
VNI 10

VXLAN-5
VNI 10

B

Controller
Cluster

Router

NAS

Switch BGatewayBr-10

SVMVM

WHITEPAPER5

Software VXLAN Encapsulation Performance Impact

VXLAN uses MAC in UDP encapsulation. Since VXLAN is an additional encapsulation
mechanism introduced at the hypervisor layer, there are certain performance implications.

VXLAN introduces an additional layer of packet processing at the hypervisor level. For
each packet on the
VXLAN network, the hypervisor needs to add protocol headers on the sender side
(encapsulation) and remove
them (de-encapsulation) on the receiver side. This causes additional CPU overhead, the
amount of which will vary based upon the packet size.

Apart from this CPU overhead, some of the offload capabilities of the NIC cannot be
used because the inner packet is no longer accessible. The physical NIC hardware
offload capabilities (e.g., checksum offloading, TCP segmentation offload) have been
designed for standard (non-encapsulated) packet headers, and some of these capabilities
cannot be used for encapsulated packets.

In such a case, a VXLAN-enabled packet will require CPU resources to perform a task
that otherwise would have been done more efficiently by physical NIC hardware. There
are certain NIC offload capabilities that can be used with VXLAN, but they depend
on the physical NIC and the driver being used. As a result, the performance may vary
based on the hardware used when VXLAN is configured. Moving the VXLAN VTEP
tunnels to ToR switches solve all those performance issues and thus is often a requirement
for high performance applications.

Single Management

VLAN configuration has always been a challenge, especially as the configuration file
sizes and complexity grow exponentially. Adding more protocols only exacerbates the
problem. Managing the mapping between different technologies creates operational
nightmares and makes troubleshooting nearly impossible. A single management location
for the configuration files can greatly simplify the process of connecting the physical and
virtual worlds using VXLAN tunnels.

Documentation

For complete configuration details for PicOS, please visit our support site:
http://www.pica8.com/support/documents/

Pica8, Inc. �
Corporate Headquarters

1032 Elwell Court, Suite 105
Palo Alto, California 94303 USA
650-614-5838 | www.pica8.com
© Pica8, Inc., 2015. All rights reserved.
Produced in the United States 05/15.

Pica8 and PicOS are trademarks of Pica8, Inc.

Pica8 and PicOS trademarks are intended and authorized for use only in countries and
jurisdictions in which Pica8, Inc. has obtained the rights to use, market and advertise the
brand. Pica8, Inc. shall not be liable to third parties for unauthorized use of this document
or unauthorized use of its trademarks. References in this publication to Pica8, Inc. products
or services do not imply that Pica8, Inc. intends to make these available in all countries in
which it operates. Contact Pica8, Inc. for additional information.

